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•  Extracting reliable spin PDFs through a χ2 
fit to world polarized scattering data  

•  Data: 
Ø  Fitting ~2880 data points 
Ø  Less stringent kinematic cuts 
Ø  Inclusion of new JLab data 
 

•  Theory: 
Ø  Finite-Q2 and nuclear corrections 

implemented 
 



Deep-inelastic Scattering (DIS) 
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FIG. 1: Schematic picture of Deep-Inelastic Scattering for
one photon exchange. The kinematic variables are defined in
Tab. I.

target the representation of Wµν requires four structure
functions to describe the nucleon’s internal structure. It
can be written as [15, 39, 40]:
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Here, F1 and F2 are polarization-averaged structure func-
tions (in the following also called ’unpolarized’), while
g1 and g2 are spin structure functions, all depending on
both x and Q2, which have been suppressed here for sim-
plicity. The sensitivity of the cross section to g1 and g2

arises from the product of the anti-symmetric parts of
the Lµν and Wµν tensors, which is non-zero only when
both target and beam are polarized.

For a spin-1 target such as the deuteron, the hadronic
tensor has four additional structure functions arising
from its electric quadrupole structure [41, 42]. Only three
appear at leading-twist level: b1, b2 and ∆. In the scaling
(Bjorken) limit the structure function b2 is related to b1

by b2(x) = 2xb1(x); ∆ describes the double helicity-flip
(virtual) photon-deuteron amplitude [43]. The structure
function b1 appears in a product with the tensor polar-
ization of the target, which can coexist with the vector
polarization in spin-1 targets. The influence of the ten-
sor polarization on the g1 measurement is discussed in
Sect. IVC. In this analysis the unmeasured function ∆
is neglected since its contribution is suppressed for lon-
gitudinally polarized targets.

The structure function g1 is related directly to the cross
section difference:

σLL ≡
1

2
(σ

→

⇐ − σ
→

⇒) , (19)

TABLE I: Kinematic variables used in the description of deep-
inelastic scattering.

ml
Mass of incoming lepton
(considered as negligible)

M Mass of target nucleon

k = (E, k⃗), k′ = (E′, k⃗′)
4–momenta of the initial and
final state leptons

s, S Lepton’s and target’s spin
4-vectors

θ, φ
Polar and azimuthal angle of the
scattered lepton

P
lab
= (M, 0)

4–momentum of the initial target
nucleon

q = (E − E′, k⃗ − k⃗′)
4–momentum of the virtual
photon

Q2 = −q2

lab
≈ 4EE′ sin2 θ

2

Negative squared 4–momentum
transfer

ν =
P · q
M

lab
= E − E′ Energy of the virtual photon in

the target rest frame

x =
Q2

2P · q
=

Q2

2Mν
Bjorken scaling variable

y =
P · q
P · k

=
ν
E

W 2 = (P + q)2

= M2 + 2Mν −Q2

Squared invariant mass of the
photon–nucleon system

where longitudinally (L) polarized leptons (→) scatter on
longitudinally (L) polarized nuclear targets with polar-
ization direction either parallel or anti-parallel (

→
⇒,

→
⇐)

to the spin direction of the beam. The relationship to
spin structure functions is:

d2σLL(x, Q2)
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Q4
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2
−
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4
γ2
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g1(x, Q2) −
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2
γ2 g2(x, Q2)

]
, (20)

where γ2 = Q2/ν2. The spin structure function g2(x, Q2)
does not have any probabilistic interpretation in the
QPM. It will not be discussed further in this paper, but
it is taken into account in the extraction of g1 by using a
parameterization of the published data. The second term
is small compared to the first. Averaged over all (x, Q2)
bins of this analysis it is of order 0.54% for the proton
and 1.9% for the deuteron. Therefore the existing preci-
sion for g2 has only a marginal effect on an extraction of
g1.

For only the purely technical reason that absolute cross
sections are difficult to measure, asymmetries are the
usual direct experimental observable:

A|| ≡
σLL

σUU
, (21)
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Polarized DIS Observables 
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•  Experiment measure electron polarization asymmetries 

where A1 and A2 are defined in terms of polarized structure functions g1 and g2  
	
  

gi = gi(x,Q
2)



Finite-Q2 Corrections 
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•  Higher Twist  –  1/Q2  corrections arise from local (higher twist) operators 
in QCD matrix elements – can decompose g1 and g2 as a sum of twist terms 

g1
⌧2(x) =

1

2

X

q

e

2
q [�Cqq ⌦�q(x) +�Cqg ⌦�g(x)]

•  Leading twist (            ) at NLO without target mass corrections (TMC) ⌧ = 2

•  Relationship between twist-3 g1 and g2 ( Bluemlein, Tkabladze NPB 553, 427 
(1999) )   
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Finite-Q2 Corrections 
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•  Nuclear smearing - effects from bound nucleons in 3He and deuterium nuclei -  
convolute nucleon structure functions with momentum distribution functions 

•  Target mass corrections -  M2/Q2 suppressed contributions to LT structure 
functions from finite nucleon mass 
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Parameterization 
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•  Parton plus distributions parameterized as  

•  Twist-3 structure function parameterization enters at the parton level 

•  Twist-4 structure function parameterized by 

•  Total # of parameters = 10 shape parameters for spin PDFS + 8 x 2 higher twist 
parameters = 26   
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Fitting Procedure 
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•  Standard χ2 fit is defined  

Uncertainties added in 
quadrature 

•  JAM analysis uses modified χ2 to account for correlated errors (e.g. overall 
normalization) 

•  PDF uncertainties computed using Hessian method 

Hij =
1

2

@�2(~p)
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����
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Covariance matrix 



Uncertainties 
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•   In the eigenbasis {êi} of the covariance matrix, the shift of parameters 
from best value is defined by scale factors {ti} 
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X
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•  Uncertainties on observables are defined by 

Observable at best parameter values Edges of confidence regions (e.g. 68% or 98%) 



Inclusive DIS Data 
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Complete collection of world’s inclusive polarized
DIS data (interactive database at http://www.jlab.org/JAM)

JAM global analysis
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soon to be extended to SIDIS & polarized pp data
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Preliminary Results 
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New JAM15 analysis
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Total of 2887 data points,           = 1.18   �2
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Q2 > 1.0 GeV2

W 2 > 3.5 GeV2



Preliminary Results 
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JAM15 PDFs consistent with DSSV, within errors
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New JAM15 analysis
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•  Consistent with DSSV 

•  Reduction of uncertainties with JLab data  



Preliminary Results 
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New JAM15 analysis
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•  Neutron higher twist set to zero (not well constrained) 



Preliminary Results 
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error reduction also on HT contributions

New JAM15 analysis
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•  Reduced uncertainties with the inclusion of JLab data 



Summary 

•  Finalized results will reveal impact of JLab 6 GeV 
data on LT PDFs and higher twist matrix elements 

 
•  Future work: 
–  Universal fit to extract unpolarized and polarized PDFs 

from DIS data simultaneously 
–  Inclusion of SIDIS and polarized pp data 

•  Constrains gluon and sea distributions 
–  Extension to transverse momentum dependent PDFs 

•  www.jlab.org/JAM  
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Thank You! 
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